Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Precise control over oxygen impurities in nano-crystalline silicon thin film processed with a low hydrogen dilution gas system at near room temperature

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Jin Nyoung-
dc.contributor.authorLee, Dong Hyeok-
dc.contributor.authorHong, MunPyo-
dc.date.accessioned2021-09-05T08:18:23Z-
dc.date.available2021-09-05T08:18:23Z-
dc.date.created2021-06-15-
dc.date.issued2014-06-
dc.identifier.issn1567-1739-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/98335-
dc.description.abstractAn atmosphere highly diluted with hydrogen is essential to increase the crystal fraction during formation of hydrogenated nano-crystalline (nc) or micro-crystalline (mu c) silicon thin films via chemical vapor deposition (CVD). This hydrogen-rich process, however, hinders the ability for the material to find adequate use in micro-electronic devices due to contamination that results in oxygen-related problems such as donor-like doping, defect creation, or passivation. The use of neutral beam assisted chemical vapor deposition (NBaCVD), with a low hydrogen ratio (R = H-2/SiH4) of 4, successfully deposits a highly-crystallized nc-silicon (HC nc-Si) thin film (TF) at near room temperature (<80 degrees C) and effectively reduces oxygen contamination by as much as 100 times when compared to conventional plasma enhanced CVD. During the formation of HC nc-Si TF via NBaCVD, energetic hydrogen atoms directly react with oxygen atoms near the surface of the nc-Si TF and remove the oxygen impurities. This is a completely different mechanism from the hydrogen-enhanced oxygen diffusion model. This technology meets the recent requirements of a high deposition rate and low temperature necessary for flexible electronics. (C) 2014 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.subjectCHEMICAL-VAPOR-DEPOSITION-
dc.subjectMICROCRYSTALLINE SILICON-
dc.subjectPARTICLE-BEAM-
dc.subjectGRAIN-BOUNDARIES-
dc.subjectSURFACES-
dc.subjectIONS-
dc.titlePrecise control over oxygen impurities in nano-crystalline silicon thin film processed with a low hydrogen dilution gas system at near room temperature-
dc.typeArticle-
dc.contributor.affiliatedAuthorJang, Jin Nyoung-
dc.contributor.affiliatedAuthorHong, MunPyo-
dc.identifier.doi10.1016/j.cap.2014.03.023-
dc.identifier.scopusid2-s2.0-84899787144-
dc.identifier.wosid000336441400011-
dc.identifier.bibliographicCitationCURRENT APPLIED PHYSICS, v.14, no.6, pp.901 - 904-
dc.relation.isPartOfCURRENT APPLIED PHYSICS-
dc.citation.titleCURRENT APPLIED PHYSICS-
dc.citation.volume14-
dc.citation.number6-
dc.citation.startPage901-
dc.citation.endPage904-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART001881986-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusMICROCRYSTALLINE SILICON-
dc.subject.keywordPlusPARTICLE-BEAM-
dc.subject.keywordPlusGRAIN-BOUNDARIES-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusIONS-
dc.subject.keywordAuthorOxygen control-
dc.subject.keywordAuthorNano crystal silicon-
dc.subject.keywordAuthorLow hydrogen ratio-
dc.subject.keywordAuthorNeutral beam-
dc.subject.keywordAuthorCVD-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Applied Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Mun Pyo photo

Hong, Mun Pyo
응용물리학과
Read more

Altmetrics

Total Views & Downloads

BROWSE