Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Creatine and taurine mixtures alleviate depressive-like behaviour in Drosophila melanogaster and mice via regulating Akt and ERK/BDNF pathways

Authors
Kim, SuhyeonHong, Ki-BaeKim, SingeunSuh, Hyung JooJo, Kyungae
Issue Date
9-Jul-2020
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.10, no.1
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
10
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/54408
DOI
10.1038/s41598-020-68424-1
ISSN
2045-2322
Abstract
We investigated the antidepressant effect of creatine (CRE) and taurine (TAU) mixtures on behavioural changes and biomarkers in stress-induced depression in Drosophila melanogaster and a mouse model. Following CRE/TAU mixture administration in the Drosophila model, depression-like state induced by vibration, locomotion, climbing activity, and survival rate were measured. The normal stress (NS) group demonstrated decreased movement than the control (CON) group; movements in the CRE/TAU-treated group (particularly 0.15/0.5%) returned to the CON levels. Antidepressant effects of CRE/TAU mixtures were confirmed in a depressive mouse model induced by chronic mild stress. In behavioural assessments, movement and sucrose preference of the CRE/TAU group increased to a similar level as in the positive control group; hippocampal catecholamine and serotonin levels increased significantly. Stress-related hormones (adrenocorticotropic and corticotropin-releasing hormones) and inflammatory factors (IL-1 beta, IL-6, and TNF-alpha) increased in the NS group but significantly decreased in the CRE/TAU-treated group. Brain signalling protein expression ratio of phosphorylated protein kinase B (p-Akt)/Akt, phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK, and brain-derived neurotrophic factor (BDNF) significantly increased in the CRE/TAU-treated group. These results indicate that CRE/TAU-induced antidepressant effects are associated with increased behavioural patterns and downregulation of stress hormones and cytokines, mediated through Akt and ERK/BDNF pathways in vertebrate models.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Health Sciences > School of Biosystems and Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Suh, Hyung Joo photo

Suh, Hyung Joo
College of Health Sciences (School of Biosystems and Biomedical Sciences)
Read more

Altmetrics

Total Views & Downloads

BROWSE