Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hepatic transcriptomics analysis reveals that fructose intervention down-regulated xenobiotics-metabolising enzymes through aryl hydrocarbon receptor signalling suppression in C57BL/6N mice

Authors
Pan, Jeong HoonTang, JingsiBeane, Kaleigh E.Redding, Mersady C.Cho, Yun JeongKim, Young JunZhao, JiangchaoShin, Eui-CheolLee, Jin HyupKong, Byungwhi C.Kim, Jae Kyeom
Issue Date
14-10월-2019
Publisher
CAMBRIDGE UNIV PRESS
Keywords
Aryl hydrocarbon receptor; Biotransformation enzymes; Fructose; Transcriptomics; C57BL; 6N mice
Citation
BRITISH JOURNAL OF NUTRITION, v.122, no.7, pp.769 - 779
Indexed
SCIE
SCOPUS
Journal Title
BRITISH JOURNAL OF NUTRITION
Volume
122
Number
7
Start Page
769
End Page
779
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/62518
DOI
10.1017/S0007114519001612
ISSN
0007-1145
Abstract
For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Food and Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Jun photo

Kim, Young Jun
식품생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE