Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy
- Authors
- Lee, Jung Ah; Lim, Young Rok; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae
- Issue Date
- 21-10월-2016
- Publisher
- IOP PUBLISHING LTD
- Keywords
- Schottky nanocontact; conductive AFM; nanostructures; Schottky barrier height; ideality factor
- Citation
- NANOTECHNOLOGY, v.27, no.42
- Indexed
- SCIE
SCOPUS
- Journal Title
- NANOTECHNOLOGY
- Volume
- 27
- Number
- 42
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/87156
- DOI
- 10.1088/0957-4484/27/42/425711
- ISSN
- 0957-4484
- Abstract
- To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I-V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles
- College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.